Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpolation-based immersogeometric analysis methods for multi-material and multi-physics problems (2402.15937v1)

Published 24 Feb 2024 in math.NA and cs.NA

Abstract: Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed boundary method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchical B-splines is used to both improve interface geometry representations and resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom compared to classical boundary-fitted finite element methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust Nitsche’s formulation for interface problems. Computer Methods in Applied Mechanics and Engineering 225-228:44–54. 10.1016/j.cma.2012.03.008 Atallah et al [2022] Atallah NM, Canuto C, Scovazzi G (2022) The high-order Shifted Boundary Method and its analysis. Computer Methods in Applied Mechanics and Engineering 394:114885. 10.1016/j.cma.2022.114885 Babuška and Melenk [1997] Babuška I, Melenk JM (1997) The Partition of Unity Method. International Journal for Numerical Methods in Engineering 40(4):727–758. 10.1002/(SICI)1097-0207(19970228)40:4¡727::AID-NME86¿3.0.CO;2-N Badia et al [2018] Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering 336:533–553 Baratta et al [2023] Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Atallah NM, Canuto C, Scovazzi G (2022) The high-order Shifted Boundary Method and its analysis. Computer Methods in Applied Mechanics and Engineering 394:114885. 10.1016/j.cma.2022.114885 Babuška and Melenk [1997] Babuška I, Melenk JM (1997) The Partition of Unity Method. International Journal for Numerical Methods in Engineering 40(4):727–758. 10.1002/(SICI)1097-0207(19970228)40:4¡727::AID-NME86¿3.0.CO;2-N Badia et al [2018] Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering 336:533–553 Baratta et al [2023] Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Babuška I, Melenk JM (1997) The Partition of Unity Method. International Journal for Numerical Methods in Engineering 40(4):727–758. 10.1002/(SICI)1097-0207(19970228)40:4¡727::AID-NME86¿3.0.CO;2-N Badia et al [2018] Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering 336:533–553 Baratta et al [2023] Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering 336:533–553 Baratta et al [2023] Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  2. Atallah NM, Canuto C, Scovazzi G (2022) The high-order Shifted Boundary Method and its analysis. Computer Methods in Applied Mechanics and Engineering 394:114885. 10.1016/j.cma.2022.114885 Babuška and Melenk [1997] Babuška I, Melenk JM (1997) The Partition of Unity Method. International Journal for Numerical Methods in Engineering 40(4):727–758. 10.1002/(SICI)1097-0207(19970228)40:4¡727::AID-NME86¿3.0.CO;2-N Badia et al [2018] Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering 336:533–553 Baratta et al [2023] Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Babuška I, Melenk JM (1997) The Partition of Unity Method. International Journal for Numerical Methods in Engineering 40(4):727–758. 10.1002/(SICI)1097-0207(19970228)40:4¡727::AID-NME86¿3.0.CO;2-N Badia et al [2018] Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering 336:533–553 Baratta et al [2023] Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering 336:533–553 Baratta et al [2023] Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  3. Babuška I, Melenk JM (1997) The Partition of Unity Method. International Journal for Numerical Methods in Engineering 40(4):727–758. 10.1002/(SICI)1097-0207(19970228)40:4¡727::AID-NME86¿3.0.CO;2-N Badia et al [2018] Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering 336:533–553 Baratta et al [2023] Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering 336:533–553 Baratta et al [2023] Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  4. Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering 336:533–553 Baratta et al [2023] Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  5. Baratta IA, Dean JP, Dokken JS, et al (2023) DOLFINx: The next generation FEniCS problem solving environment. 10.5281/zenodo.10447666 Bauccio and International [1994] Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  6. Bauccio M, International ASM (1994) ASM Engineered Materials Reference Book. ASM International Belytschko and Black [1999] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  7. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620. 10.1002/(SICI)1097-0207(19990620)45:5¡601::AID-NME598¿3.0.CO;2-S Belytschko et al [2001] Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  8. Belytschko T, Moës N, Usui S, et al (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4):993–1013. 10.1002/1097-0207(20010210)50:4¡993::AID-NME164¿3.0.CO;2-M Boggs et al [2005] Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  9. Boggs PT, Althsuler A, Larzelere AR, et al (2005) DART system analysis. Tech. Rep. SAND2005-4647, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 10.2172/876325 de Boor [1972] de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  10. de Boor C (1972) On calculating with B-splines. Journal of Approximation Theory 6(1):50–62. 10.1016/0021-9045(72)90080-9 Borden et al [2011] Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  11. Borden MJ, Scott MA, Evans JA, et al (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87(1-5):15–47. 10.1002/nme.2968 Burkhart et al [2013] Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  12. Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics 46(9):1477–1488. 10.1016/j.jbiomech.2013.03.022 Burman [2010] Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  13. Burman E (2010) Ghost penalty. Comptes Rendus Mathematique 348(21):1217–1220. 10.1016/j.crma.2010.10.006 Burman et al [2023] Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  14. Burman E, Hansbo P, Larson MG, et al (2023) Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering 403:115707. 10.1016/j.cma.2022.115707 Cheng and Fries [2010] Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  15. Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering 82(5):564–590 Cockburn [2003] Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  16. Cockburn B (2003) Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 83(11):731–754. 10.1002/zamm.200310088 Divi et al [2020] Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  17. Divi SC, Verhoosel CV, Auricchio F, et al (2020) Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers & Mathematics with Applications 80(11):2481–2516. 10.1016/j.camwa.2020.03.026 Düster et al [2008] Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  18. Düster A, Parvizian J, Yang Z, et al (2008) The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering 197(45):3768–3782. 10.1016/j.cma.2008.02.036 Elfverson et al [2018] Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  19. Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences 5(1):6. 10.1186/s40323-018-0099-2 Engvall and Evans [2020] Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  20. Engvall L, Evans JA (2020) Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 371:113305. 10.1016/j.cma.2020.113305 Fries and Omerović [2016] Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  21. Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering 106(5):323–371. https://doi.org/10.1016/j.cma.2016.10.019 Fromm [2024] Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  22. Fromm JE (2024) jefromm/EXHUME_dolfinx. URL https://github.com/jefromm/EXHUME_dolfinX Fromm et al [2023] Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  23. Fromm JE, Wunsch N, Xiang R, et al (2023) Interpolation-based immersed finite element and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 405:115890. 10.1016/j.cma.2023.115890 Garau and Vázquez [2018] Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  24. Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics 123:58–87. 10.1016/j.apnum.2017.08.006 Giannelli et al [2012] Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  25. Giannelli C, Jüttler B, Speleers H (2012) THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design 29(7):485–498. 10.1016/j.cagd.2012.03.025 Gunderman et al [2021a] Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  26. Gunderman D, Weiss K, Evans JA (2021a) High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design 141:103093. https://doi.org/10.1016/j.cad.2021.103093 Gunderman et al [2021b] Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  27. Gunderman D, Weiss K, Evans JA (2021b) Spectral mesh-free quadrature for planar regions bounded by rational parametric curves. Computer-Aided Design 130:102944. https://doi.org/10.48550/arXiv.2005.07780 Hansbo and Hansbo [2004] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  28. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33):3523–3540. 10.1016/j.cma.2003.12.041 Huang et al [2022] Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  29. Huang TH, Chen JS, Tupek MR, et al (2022) A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. Computer Methods in Applied Mechanics and Engineering 389:114396. 10.1016/j.cma.2021.114396 Hughes et al [2005] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  30. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39):4135–4195. 10.1016/j.cma.2004.10.008 Hughes et al [2008] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  31. Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering 197(49):4104–4124. 10.1016/j.cma.2008.04.006 Hughes et al [2014] Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  32. Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272:290–320. 10.1016/j.cma.2013.11.012 Johansson et al [2020] Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  33. Johansson A, Larson MG, Logg A (2020) Multimesh finite elements with flexible mesh sizes. Computer Methods in Applied Mechanics and Engineering 372:113420. 10.1016/j.cma.2020.113420 Kamensky [2021] Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  34. Kamensky D (2021) Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications 81:634–648. 10.1016/j.camwa.2020.01.023 Kamensky and Bazilevs [2019] Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  35. Kamensky D, Bazilevs Y (2019) tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering 344:477–498. 10.1016/j.cma.2018.10.002 Kamensky et al [2015] Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  36. Kamensky D, Hsu MC, Schillinger D, et al (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering 284:1005–1053. 10.1016/j.cma.2014.10.040 Kiendl et al [2015] Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  37. Kiendl J, Hsu MC, Wu MCH, et al (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering 291:280–303. 10.1016/j.cma.2015.03.010 Knupp [2007] Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  38. Knupp P (2007) Remarks on Mesh Quality. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, URL https://www.semanticscholar.org/paper/Remarks-on-Mesh-Quality.-Knupp/4a229d7e0a7a2cdd5df2d2c0e57dee83ba397bbe Knupp [2001] Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  39. Knupp PM (2001) Algebraic Mesh Quality Metrics. SIAM J Sci Comput 23(1):193–218. 10.1137/S1064827500371499 Main and Scovazzi [2018a] Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  40. Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics 372:972–995. 10.1016/j.jcp.2017.10.026 Main and Scovazzi [2018b] Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  41. Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and incompressible Navier–Stokes equations. Journal of Computational Physics 372:996–1026. 10.1016/j.jcp.2018.01.023 MatWeb [2024] MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  42. MatWeb (2024) Overview of materials for Epoxy Cure Resin. URL https://www.matweb.com/search/datasheet_print.aspx?matguid=956da5edc80f4c62a72c15ca2b923494 Maute [2023] Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  43. Maute K (2023) MORIS. URL https://github.com/kkmaute/moris Min and Gibou [2007] Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  44. Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics 226(2):1432–1443. https://doi.org/10.1016/j.jcp.2007.05.032, URL https://www.sciencedirect.com/science/article/pii/S0021999107002410 Moutsanidis et al [2021] Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  45. Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Computer Methods in Applied Mechanics and Engineering 373:113521. 10.1016/j.cma.2020.113521 Moës et al [1999] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  46. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150. 10.1002/(SICI)1097-0207(19990910)46:1¡131::AID-NME726¿3.0.CO;2-J Müller et al [2013] Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  47. Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528. 10.1002/nme.4569 Nazir et al [2023] Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  48. Nazir A, Gokcekaya O, Md Masum Billah K, et al (2023) Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Materials & Design 226:111661. 10.1016/j.matdes.2023.111661 Nitsche [1971] Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  49. Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. AbhMathSeminUnivHambg 36(1):9–15. 10.1007/BF02995904 Noël et al [2022] Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  50. Noël L, Schmidt M, Doble K, et al (2022) XIGA: An eXtended IsoGeometric analysis approach for multi-material problems. Comput Mech 70(6):1281–1308. 10.1007/s00466-022-02200-y Osher and Sethian [1988] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  51. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49. 10.1016/0021-9991(88)90002-2 Parvizian et al [2007] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  52. Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133. 10.1007/s00466-007-0173-y Peskin [1972] Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  53. Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10(2):252–271. 10.1016/0021-9991(72)90065-4 de Prenter et al [2023] de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  54. de Prenter F, Verhoosel CV, van Brummelen EH, et al (2023) Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies. Arch Computat Methods Eng 30(6):3617–3656. 10.1007/s11831-023-09913-0 Rajak et al [2019] Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  55. Rajak DK, Pagar DD, Menezes PL, et al (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11(10):1667. 10.3390/polym11101667 Schillinger and Ruess [2015] Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  56. Schillinger D, Ruess M (2015) The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Arch Computat Methods Eng 22(3):391–455. 10.1007/s11831-014-9115-y Schillinger et al [2012] Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  57. Schillinger D, Dedè L, Scott MA, et al (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252:116–150. 10.1016/j.cma.2012.03.017 Schillinger et al [2016] Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  58. Schillinger D, Ruthala PK, Nguyen LH (2016) Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering 108(6):515–534. 10.1002/nme.5216 Schlinkman et al [2023] Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  59. Schlinkman RT, Baek J, Beckwith FN, et al (2023) A Quasi-Conforming Embedded Reproducing Kernel Particle Method for Heterogeneous Materials. 10.48550/arXiv.2304.06150 Schmidt et al [2023] Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  60. Schmidt M, Noël L, Doble K, et al (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71(6):1179–1203. 10.1007/s00466-023-02306-x Soghrati [2014] Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  61. Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations. Journal of Computational Physics 275:41–52. 10.1016/j.jcp.2014.06.016 Sommariva and Vianello [2009] Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  62. Sommariva A, Vianello M (2009) Gauss–green cubature and moment computation over arbitrary geometries. Journal of Computational and Applied Mathematics 231(2):886–896. https://doi.org/10.1016/j.cam.2009.05.014 Strouboulis et al [2000a] Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  63. Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering 181(1):43–69. 10.1016/S0045-7825(99)00072-9 Strouboulis et al [2000b] Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  64. Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 47(8):1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8¡1401::AID-NME835¿3.0.CO;2-8 Sudhakar and Wall [2013] Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  65. Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering 258:39–54. 10.1016/j.cma.2013.01.007 Terada et al [2003] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  66. Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Meth Engng 58(9):1321–1346. 10.1002/nme.820 Tirvaudey et al [2019] Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  67. Tirvaudey M, Bouclier R, Passieux JC, et al (2019) Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software. Engineering Computations 37(1):237–261. 10.1108/EC-03-2019-0108 Vese and Chan [2002] Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  68. Vese LA, Chan TF (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3):271–293. 10.1023/A:1020874308076 Wang et al [2003] Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  69. Wang D, Chen JS, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elements in Analysis and Design 39(8):765–782. 10.1016/S0168-874X(03)00058-1 Wang et al [2023] Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  70. Wang Y, Baek J, Tang Y, et al (2023) Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures. Comput Mech 10.1007/s00466-023-02394-9 Zhu and Yan [2021] Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910 Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
  71. Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 383:113910. 10.1016/j.cma.2021.113910
Citations (2)

Summary

We haven't generated a summary for this paper yet.